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We continue the study of the integrodifferential equation proposed previously for the evaluation of the 
ground-state energy of an imperfect Bose gas. We apply it here to the one-dimensional delta-function gas 
where the exact result is known for all values of the coupling constant y. The results are: (i) For small y, the 
equation gives the correct first two terms in an asymptotic series; (ii) a numerical solution of the equation 
shows that the maximum relative error occurs for y— <*> in which case it is 19%; (iii) for y — °o we are 
able to compare the exact two-particle distribution function with that given by the equation. The agreement 
is quite good. 

I. INTRODUCTION 

IN a previous paper1 (hereafter referred to as I) one 
of us proposed a nonlinear, integrodifferential equa

tion whose solution, hopefully, yielded the ground-state 
energy Eo of a gas of bosons interacting via pairwise 
forces. We have so far established the validity of this 
equation to the following extent: 

(i) In I we verified that for short-range forces and 
low density (weak-coupling constant). The equation 
yields the "correct" first two terms for an expansion of 
Eo in the density. By the word "correct" we mean that 
our result agreed with that obtained by numerous other 
authors, although it must be admitted that no one has 
yet succeeded in giving a rigorous proof of these terms. 
An important advantage of our equation in this case is 
that one is not obliged to introduce a pseudopotential in 
order to handle a potential with a hard core. 

(ii) In the second paper in this series2 it was shown 
that the equation also gives the correct result for the 
charged Bose gas in the limit of weak coupling (in this 
case high density). Once again, "correctness" has not 
been rigorously established, but our result agreed with 
all published calculations on the subject.3,4 It was also 
pointed out in this paper that the equation would at 
least give the correct functional dependence of Eo on the 
coupling constant in the limit of large-coupling constant, 
although the exact coefficient must await a numerical 
computation. 

It is our ultimate aim to apply this equation to the 
real problem of liquid helium—clearly, not a weak-
coupling problem. Prior to this we are obliged to search 
for as many examples—however, academic—where 
something is known about the intermediate and strong-

* Work partially performed at the IBM—Watson Research 
Center, Yorktown Heights, New York. 

1 E. H. Lieb, Phys. Rev. 130, 2518 (1963). The equation in 
question is (3.29) whose solution is to be inserted into (3.7). 

2 E . H. Lieb and A. Y. Sakakura, Phys. Rev. 133, 899 (1964). 
3 M. Girardeau, Phys. Rev. 127, 1809 (1962). 
4 L. L. Foldy, Phys. Rev. 124, 649 (1961). 

coupling constant regions, and to establish the validity 
of the equation in those cases. Two problems that come 
to mind in this connection are the hard-sphere Bose gas 
and the charged Bose gas; these will be investigated in 
due course. 

For the present we turn to the only model problem 
for which Eo is exactly known for all values of the coup
ling constant—the gas of one-dimensional bosons inter
acting via a repulsive delta-function potential.5 We 
wish to report here the following results of a numerical 
comparison between the solution to the equation and the 
exact Eo: 

(i) In the limit of weak-coupling constant 7, the two 
agree precisely up to the second term in an expansion 
in y. 

(ii) The case of maximum relative error occurs for 
infinite 7, when the error is 19%. 

(iii) For infinite y we are able to evaluate the exact 
two-particle distribution function and compare it with 
that given by the numerical solution to the non
linear equation. The comparison, shown in Fig. 2, is 
quite good. Assuming that the largest error in the dis
tribution function occurs for infinite 7, as it does for 
the energy, we may conclude that the equation gives a 
good approximation to the distribution function as well 
as to the energy. 

Two points are to be noted. Firstly, since the relative 
error is already quite small, it seems likely that an 
improved version of the integrodifferential equation (to 
be obtained by invoking higher correlation functions 
than the second) will reduce the error still further. 
Secondly, that the equation gives the first two terms 
correctly for small 7 parallels the results for the three-
dimensional gases so far investigated. This fact would 
seem to support the assertion made in II that this one-
dimensional gas is not basically pathological, but has 
many features in common with real gases. 

5 E . H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963), 
referred to as II. 
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In Sec. I I we outline the problem at hand and present 
an analytic solution of the nonlinear equation valid for 
small 7. In Sec. I l l we discuss the numerical procedures 
employed for the general 7 and present a numerical 
comparison with the exact EQ. In Sec. IV we discuss the 
two-particle distribution function for y = °o. 

II. WEAK COUPLING 

The Hamiltonian of the problem6 is 

S= -Hih\^/^)+2cY.^)h{xi-x3), (2.1) 

where 2c>0 is the strength of the delta function. The 
line (on which periodic boundary conditions are satis
fied) is of length L. There are N particles, with p—N/L 
being the density. I t was shown in I I that for a large 
system Eo was of the form 

Eo=Np2e(y) (2.2) 

with y=c/p being the dimensionless coupling constant. 
The function e(y) was obtained by solving the integral 
equation, I I (3.18), and inserting the result into I I 
(3.19) and I I (3.20). The numerical result was plotted 
in I I Fig. 3. The function e{y) has the following proper
ties: (a) lim7->JOe(7) = 7r2/3; (b) 0(7) is monotonically 
increasing; (c) for small 7 

6 ( 7 ) = 7 _ ( 4 / 3 7 r ) 7 3 / 2 . (2.3) 

The first term in Eq. (2.3) was obtained directly from 
the integral equation, I I (3.18). The second term is 
that given by Bogoliubov's perturbation theory which, 
while we unfortunately could not derive it directly, ap
peared to agree quite well with the numerical results. 

We turn now to the nonlinear integrodifferential 
equation, I (3.29). I t is an equation for the two-particle 
distribution function, g(x), defined by 

/ . 
iK#i,ff2,'--,*tf)n**< 

g{\xx-x2\) = D-

I 
-, (2.4) 

lK#l,#2-' ',XN)J[dXi 

where \p is the ground-state wave function. We also de
fined u(x), the finite part of g(x), by u(x) = 1—g(x). In 
the present case it is convenient to define the dimen
sionless variable y=px and u(y/p)^(p(y), in terms of 
which [recalling that a delta-function potential is 
equivalent to a condition on <p(0+), the derivative of <p 
at y = 0 ] Eq. I (3.29) becomes 

X 2<p- J <p*<p+2 I cpHcp— J <pHA , (2.5) 

6 To facilitate comparison, we use units in which h=l, 2m = 1 
as in II, 

with 

and 
*(0+)=-.i«, *(«) = 0, 

7=<CW(o)]-1. 
The convolution integrals are defined by 

(2.6) 

(2.7) 

Jo 

f{x-y)g(y)dy 

Zf(x+y)g(y)+f(y)g(x+y)~]dy 

Jo 
y)g(y)*y, (2.8) 

the last equation being true for symmetric functions. 
I t is to be noted that these equations give 7 as a func
tion of e. 

For small e we expect <p(y) to be small. Thus, it is 
convenient to define the new variable z^e1/2y and 
^ ( « / ^ ) s ^ ( 2 ) , in terms of which Eqs. (2.5)-(2.7) 
become 

$= ( l - e 1 ^) J2^- /W+2*?1/2 U^ 

-\e iP*fi* 

tf(0+) = - J , *(») = <>, 

and 

-, (2.5a) 

(2.6a) 

T = e [ l - e 1 / V ( 0 ) ] ~ 1 . (2.7a) 

To find the first two terms in 7 [as in Eq. (2.3)3, ft *s 

necessary only to find ^(0) to leading order in e. To 
this end we can replace Eqs. (2.5a) and (2.6a) by 

$+8(z) = 2^- • I'M', (2.8) 

an equation which can be solved by Fourier transforms. 
One finds easily that the Fourier transform of ^ is 
given by 

+(p) = l+*—tfy+4tjit9 (2.9) 
2 2 

and hence 
1 C2 

xP(z)=— / p(4-p2yt2e-*>*dp. (2. 
2ir J 0 

10) 

Equation (2.10) was derived by transforming the 
inverse Fourier integral from an integral on (—°°, °°) 
to a contour integral around the cut (—2i, 2%) in \p(p). 

Since ^(0) = 4/37r, Eq. (2.7a) immediately gives the 
required result, Eq. (2.3). We also note that \p(z) is 
montonically decreasing so that g{x) < 1 for all x and all 
e as required by Eq. I (3.6d). In fact, it is interesting to 
note that this simple approximate solution to Eq. (2.5) 
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gives by itself a respectable approximation for e(y). 
From Eq. (2.7a) we see that e is a monotonically in
creasing function—a correct result—and that e(<*>) 
= -IQTT2. This is greater than the correct result, f7r2, by 
69%. As we shall see in the next section, the complete 
Eq. (2.5) depresses e(°°), but overcompensates to the 
extent that the approximate e(<*>) becomes 19% 
smaller than the correct result. 

III. NUMERICAL COMPUTATION 

For e<l, we solved the problem defined by (2.5a)-
(2.7a) while for e>l, we used Eqs. (2.5)-(2.7) [notice 
that, for e = l , we have y—z and <p(y) ='&(%)']. We 
denote by £[jp{z)~] the right side of (2.5a). Unfortun
ately, Eq. (2.5a) cannot be solved by direct iteration, 
i.e., by computing a sequence ^(w)Cs), satisfying 
$(»») = J [^ ( w _ 1 ) ] , n=l, 2, • • •, with a given first guess, 
\p(0\ and subject to boundary conditions (2.6). The 
reason is that these boundary conditions require that 

/•GO 

a condition which will not in general be satisfied. If, 
instead, we let a(z) = \//(z) — exp(—\z)/2\, then <T(Z) 
satisfies 

a~\2cx=q (3.1) 

and boundary conditions a(0) = o-(oo) = 0, where q(z) 
— £(z) — \2\f/(z). Equation (3.1) can be transformed into 
a pure integral equation which, if written in terms of 
^(z), is 

^ (* )= (1/2X){ 6T* ' - j [Y-M-HI 

+6rXW)]ff(0#J , (3.2) 

and which is amenable to solution by direct iteration. 
The quantity X is an arbitrary numerical parameter 
whose choice will be explained later. 

We donate the right side of (3.2) b y / [ ^ ] and define 
the iteration by ^ ^ / Q / ^ - 1 ) ] , n=l, 2, •••. Each 
iteration step then involves a number of quadratures, 
which, for simplicity, were carried out by the trapezoidal 
rule. The computation was done for an increasing se
quence of e values, ej=jAe ( i = l , 2, •••, m), em=l, 
using the final answer ^j(z), associated with ej, as a 
first guess, ^y+1

(0)(z), of ^y+i(s). In computing \pi(z) 
the function exp( — z/2) (which satisfies the boundary 
conditions) served as a first guess. 

In solving the problem for e>l, Eq. (2.5) was re
placed by 

<p(y) = (1/2X){ (e)e~*y- I [ e n ^ i l 

+ e~^y+^y(v)dr1\ , (3.3) 

h-

o. Y ^*>— 
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FIG. 1. The relative error, l—Eof(y)/Eo(y)) plotted as a function 

of the coupling constant 7. £0(7) is the exact ground-state energy 
while EQ (7) is that given by the numerical solution to the integro-
differential equation. The dashed line is the asymptotic value, 
18.9%. 

where r(y) = £[<p(y)~]—Xi<p(y), and £[<p] denotes the 
right side of (2.5). Equation (3.3) is analogous to (3.2). 
A program similar to the above was carried out on this 
equation for e>l. 

The iterations were stopped when the relative dif
ference between two successive iterations, i.e., \\p(n)(z) 
-—^(n-i) (z) J /^(n) (z) j ^ t n e c a s e 0f Eq. (3.2), was less 
than one percent, uniformly in z. Both variables z and 
y were cut off at a value of 20 and the solution computed 
on an equidistant grid of 400 points. The truncation 
error (i.e., the error due to the use of finite difference 
techniques), could be studied, for e=0 , by comparison 
with the known exact solution, Eq. (2.10), and, for 
larger e's it could be estimated by refining the grid. 
Similarly, the effect of varying the cutoff was studied. 
The number of grid points, the cutoff, and the con
vergence criterion indicated above were found to be 
adequate. 

For not too large e, i.e., e$j2, convergence of the 
direct iteration procedure was achieved with a fixed 
value of the numerical parameter X= 1 for all e and all 
iteration steps. We convinced ourselves that the final 
answer was independent of X by carrying out some of the 
calculations with several values of this parameter. The 
number of iterations needed was not more than a dozen. 

For larger values of e, the iteration did not converge 
with a fixed X. Instead, convergence was achieved by 
using a different X for each value of e and each iteration 
step, namely Xw(^) = ^/20(n~1)(O). With this choice of 
X, the inhomogeneous term on the right side of (3.3) 
does not contribute to the change from <p(n-1)(0) to 
<p(n)(0), and thus hopefully the over-all change from 
(p(n-u(y) to (p(n)(y) is reduced. 

We define the relative error to be [_e(y) — ef(y)~]/e(y)y 

where e(y) is the exact value and e'(y) is the value given 
by the integral equation. The relative error is always 
positive and is shown as a function of y in Fig. 1. 
Although we cannot give a rigorous bound on the 
numerical errors, a pessimistic estimate of them indicates 
that the relative error for y= 00 is (18.9±1)%. 
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IV. THE DISTRIBUTION FUNCTION FOR f = » 

We should like to be able to compare the exact g(x)} 

as given by Eq. (2.4), with that given by Eq. (2.5), 
for this would provide a far more severe test of the equa
tion than a mere comparison of energies. Although the 
exact wave functions for the problem are known, we 
unfortunately have been unable to evaluate the iV-fold 
integrals in Eq. (2.4). 

We are indebted to Dr. A. Lenard for pointing out 
that for 7 = co (in which case the gas becomes identical 
with the Girardeau model7) these integrals have been 
evaluated by Dyson8 in connection with his work on 
the statistical theory of energy levels. Dyson in turn 
relied on the work of Mehta and Gaudin.9 What we 
have called <l>(y) = l—g(y/p), Dyson8 denotes by F2(y) 
in his Eq. (51). In Eqs. (54) and (55) he also gives 
asymptotic expressions for this function for large and 
small y. 

From Eqs. (2.5) and (2.6) we see directly [using the 
fact that 0(0) = 1 in this case] that : 0(0) = 1; <£(0+) 
= - ^ = - 1 . 3 3 ; ( ? ( 0 + ) = 0 ; ^ ( 0 + ) / ^ 4 = - e 3 = - 1 8 . 9 . 
Unfortunately, we cannot find ds<j)(0+)/dy* directly. 
In the above we have, of course, used the approximate 
e(co) = 2.67 and not the correct e(oo) = ^ / 3 = 3.29. 
These numbers are to be compared with Eq. (54) of 
Dyson: 0(O) = 1; 0 ( 0 + ) = - 1 . 6 4 , 0(O+) = O; 

J 4 0 ( O + y y 4 = - 1 7 . 3 . 

For large y we have been unable to find an analytic 
7 M. Girardeau, J. Math. Phys. 1, 516 (1960). 
8 F. J. Dyson, J. Math. Phys. 3, 166 (1962). 
9 M. L. Mehta, Nucl. Phys. 18, 395 (1960); M. L. Mehta and 

M. Gaudin, ibid. 18, 420 (1960); M. Gaudin, ibid. 25, 447 (1960). 
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expression for <j> from Eq. (2.5). The numerical results, 
however, indicate that our 4>{y) goes to zero much faster 
than the correct behavior {iry)~2. Apparently it goes to 
zero like p(y) exp(—Ay), where X is some constant of 
the order of unity and p(y) is a polynomial. But as 
we see from Fig. 2, where the exact and approximate 
functions are plotted up to y=3.6 , the difference in 
asymptotic behaviors becomes apparent only when <t> 
is numerically small. Beyond y=3 .6 the approximate <t> 
quickly becomes much less than the exact <£. 
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